Difference between revisions of "Conferences"
From Jtkwiki
Jump to navigationJump to search(One intermediate revision by the same user not shown) | |||
Line 9: | Line 9: | ||
* [https://www.opendatascience.com/blog/the-role-of-constructivism-in-teaching-data-science-for-iot/ The Role of Constructivism in Data Science] -- should there be one, really? Constructivism has two faces / interpretation, one is the outright denial of any objectivity and the other is a kind of acknowledgement of subjectivity. There should be no role for the former in any kind of science, but the latter may have some points. | * [https://www.opendatascience.com/blog/the-role-of-constructivism-in-teaching-data-science-for-iot/ The Role of Constructivism in Data Science] -- should there be one, really? Constructivism has two faces / interpretation, one is the outright denial of any objectivity and the other is a kind of acknowledgement of subjectivity. There should be no role for the former in any kind of science, but the latter may have some points. | ||
* [https://github.com/orgs/fluxcapacitor/people Chris Fregly] gave a talk / demo of a [https://github.com/fluxcapacitor/pipeline/wiki Data Science pipeline] comprised of a huge number of data-sciencey components. It was not clear to me whether the demo application really required any of these high performance / high throughput / highly scalable components, but it was surely interesting to see an example of tying all these together. See also [http://pipeline.io/] (I think they're related). | * [https://github.com/orgs/fluxcapacitor/people Chris Fregly] gave a talk / demo of a [https://github.com/fluxcapacitor/pipeline/wiki Data Science pipeline] comprised of a huge number of data-sciencey components. It was not clear to me whether the demo application really required any of these high performance / high throughput / highly scalable components, but it was surely interesting to see an example of tying all these together. See also [http://pipeline.io/] (I think they're related). | ||
− | * [https://prometheus.io/] | + | * [https://prometheus.io/ Prometheus] |
− | * [https://graphiteapp.org/] | + | * [https://graphiteapp.org/ Graphite] |
+ | * [http://openscoring.io/ Openscoring] (incl. [https://github.com/openscoring/openscoring Openscoring github site]) | ||
+ | * [https://github.com/Netflix/dynomite Dynomite (github site)] adding functionality to distribute data structure storage / caching |
Latest revision as of 08:56, 13 November 2016
This page contains interesting stuff I came across at conferences.
Open Data Science Conference 2016
- reproducible computing in dathttp://pipeline.io/a science, by Douglas Ashton
- An intro into Single Layer ANNs and Gradient Descent
- 3 Challenges for Open Data Science by Neil Lawrence -- mostly stuff that I found relatively well known already, but the mention of the ratio of information processing to information transmission was very welcome to me.
- The Role of Constructivism in Data Science -- should there be one, really? Constructivism has two faces / interpretation, one is the outright denial of any objectivity and the other is a kind of acknowledgement of subjectivity. There should be no role for the former in any kind of science, but the latter may have some points.
- Chris Fregly gave a talk / demo of a Data Science pipeline comprised of a huge number of data-sciencey components. It was not clear to me whether the demo application really required any of these high performance / high throughput / highly scalable components, but it was surely interesting to see an example of tying all these together. See also [1] (I think they're related).
- Prometheus
- Graphite
- Openscoring (incl. Openscoring github site)
- Dynomite (github site) adding functionality to distribute data structure storage / caching